
An Empirical Evaluation of the Effectiveness of

Inspection Scenarios Developed from a Defect

Repository

Kiyotaka Kasubuchi

Research and Development

Center

SCREEN Holdings Co., LTD

Fushimi, Kyoto, Japan

Shuji Morisaki

Graduate School of

Information Science

Nagoya University

Nagoya, Aichi, Japan

Akiko Yoshida

Research and Development

Center

SCREEN Holdings Co., LTD

Fushimi, Kyoto, Japan

Chikako Ogawa

Faculty of Informatics,

Shizuoka University

Johoku, Hamamatsu,

Shizuoka, Japan

Abstract—Abstracting and summarizing high-severity defects

detected during inspections of previous software versions could

lead to effective inspection scenarios in a subsequent version in

software maintenance and evolution. We conducted an empirical

evaluation of 456 defects detected from the requirement specifi-

cation inspections conducted during the development of industri-

al software. The defects were collected from an earlier version,

which included 59 high-severity defects, and from a later version,

which included 48 high-severity defects. The results of the evalua-

tion showed that nine defect types and their corresponding in-

spection scenarios were obtained by abstracting and summariz-

ing 45 defects in the earlier version. The results of the evaluation

also showed that 46 of the high-severity defects in the later ver-

sion could be potentially detected using the obtained inspection

scenarios. The study also investigated which inspection scenarios

can be obtained by the checklist proposed in the value-based re-

view (VBR). It was difficult to obtain five of the inspection sce-

narios using the VBR checklist. Furthermore, to investigate the

effectiveness of cluster analysis for inspection scenario develop-

ment, the 59 high-severity defects in the earlier version were clus-

tered into similar defect groups by a clustering algorithm. The

results indicated that cluster analysis can be a guide for selecting

similar defects and help in the tasks of abstracting and summa-

rizing defects.

Index Terms—Software inspection, defect abstraction,

prioritizing inspection scenarios

I. INTRODUCTION

Many techniques have been proposed to increase develop-

ment efficiency and improve software quality. Software inspec-

tion is one such technique that is aimed at detecting defects in

the early stages of software development [7]. The use of an

inspection scenario or a checklist allows inspectors to focus on

specific defect types. Studies of inspection scenario have found

that focusing on specific defect types results in efficient and

effective inspection [1][6][14][15].

As software grows in size, comprehensive defect detection

during inspection becomes increasingly difficult because of the

limited inspection time and resources. One possible solution is

to prioritize inspection scenarios or questions in a checklist and

start the inspection in the order of highest to lowest priority, in

this way the detection effort focuses initially on high-severity

defects such as those that might halt business operations.

Usage-based reading (UBR) [17] and value-based review

(VBR) [11] are techniques that prioritize inspection scenarios.

UBR defines inspection scenarios and their priorities from use

cases prioritized by the importance level before defect detec-

tion is initiated. In a UBR, inspectors start defect detection with

the highest priority scenario. In a VBR, inspectors assign a

higher detection priority to defects categorized as defect types

that have the potential to spoil the higher value capabilities of

the target software. The stakeholders of the software determine

the order of priority using a checklist to identify the higher val-

ue capabilities. The checklist consists of five categories; com-

pleteness, consistency/feasibility, ambiguity, conformance, and

risk. In a VBR, inspectors start defect detection with the high-

est defect types.

During software maintenance and evolution, the inspection

scenarios and questions in a checklist are expected to be priori-

tized according to the defects detected in previous software

versions. However, to the best of our knowledge, there is no

published study prioritizing inspection scenarios, or checklist

questions in this way. This paper investigates whether inspec-

tion scenarios developed from the high-severity defects detect-

ed in the previous software versions can detect high-severity

defects in a subsequent version and whether the inspection sce-

narios can be developed by another approach. Also, an investi-

gation whether computer-supported analysis guides developing

inspection scenarios will be conducted. More specifically, the

study was conducted to answer the following research ques-

tions:

RQ1: How effective is developing inspection scenarios Sh from

high-severity defects detected during inspections of previous

software versions?

RQ1-1: Can the inspection scenarios Sh detect a larger number

of high-severity defects than detected by inspection scenarios

Sm and Sl, which were developed from medium- and low-

severity defects?

RQ1-2: Can the inspection scenarios Sh be developed by the

checklist proposed in the VBR?

RQ2: Can computer-supported analysis of the defects detected

in the inspections of previous software versions guide the de-

velopment of inspection scenarios?

The study used 456 defects detected during the inspections

of requirement specifications of two versions of the same soft-

978-1-4673-7531-3/15/$31.00 c© 2015 IEEE ICSME 2015, Bremen, Germany

52

439

ware in an industry. First, an engineer who has knowledge and

experience with the development of the software identified

defect types and developed inspection scenarios based on the

high-severity defects detected in the earlier version. Then, two

analysts determined whether the defects detected in the later

version were detectable with the inspection scenarios. Finally,

we generated clusters of defects with an algorithm to compare

identified defect types.

The rest of the paper is organized as follows. Section 2 in-

troduces related research. Section 3 provides an overview of

the development of inspection scenarios developed from de-

fects detected in previous software versions. The settings and

the results of the evaluation are described in Sections 4 and 5.

Section 6 discusses the evaluation results. Section 7 concludes

the study.

II. RELATED RESEARCH

A number of approaches for developing scenarios to use in

a software inspection have been proposed. An inspection sce-

nario is a guide for an inspector in defect detection. Perspec-

tive-based reading (PBR) defines inspection scenarios from the

point-of-view of the stakeholders such as a user or a program-

mer [2]. Inspection scenarios used in a PBR can be developed

to detect high-severity defects. However, PBR does not refer to

the defects detected in previous software versions.

Thelin et al. proposed UBR. Inspection scenarios used in a

UBR are defined according to the use cases of the software

[17]. Inspection scenarios are prioritized according to the im-

portance of the corresponding use case. In a UBR, the use of

scenarios can only detect the defects that can be captured by

the use cases. Also, important use cases do not necessarily cor-

respond to high-severity defects.

Porter et al. proposed scenario-based reading (SBR). In-

spection scenarios used in an SBR are defined according to the

defect types that should be detected. In their article [15], three

basic defect types were presented: data type consistency, incor-

rect functionality, and ambiguity or missing functionality. Alt-

hough inspection scenarios can in fact be developed to detect

high-severity defects in previous software versions, the article

does not specifically discuss these.

The error abstraction process (EAP) enables inspectors to

detect similar defects in re-inspection and fix defects in the

same inspection [10][19]. The EAP is conducted after a defect

detection process. In an EAP, detected defects are analyzed and

abstracted into error taxonomy. In a subsequent re-inspection

process, the error taxonomy helps inspectors detect defects

similar to those detected in the defect detection process. Alt-

hough error taxonomy obtained in an EAP could be used in an

inspection of a subsequent version, we found no published

study that evaluated the effectiveness of the taxonomy in a sub-

sequent version.

Chernak proposed an approach using causal analysis for

developing questions in a checklist from the defects detected

during inspections [4]. Although these defects can be a set of

high-severity defects, the article does not specifically mention

this.

Shihab et al. investigated post-release defects to predict

high-impact defects in source code from process execution

history and source code metrics [16]. In the study, the predic-

tion model predicted defect-prone source code modules. The

procedures to identify defect types or the inspection scenarios

from the prediction model were not described.

III. INSPECTION SCENARIOS FROM A DEFECT REPOSITORY

A. Definition

A set of defects D = {d1, d2, … , dm} in a defect repository

is a set of defects detected in software inspections conducted

during the development of previous software versions. Table I

shows an example of defect repository D. The defects are de-

tected during the inspections of the development of an online

shopping system. Each defect d has certain attributes, including

a defect description written in natural language and a severity

level.

Inspection scenarios S = {S1, S2, …, Sn} are developed from

defect types T = {T1, T2, …, Tn}. Defect type Tj is identified by

abstracting and summarizing one or more defects {dk, dl, … }.

Table II shows an example of defect types T and corresponding

inspection scenarios S. The defect types T are abstracted and

summarized from the defects in Table I. Defects d1 and d2 indi-

cate that making an order is possible without specifying the

quantity purchased or the shipping address. Defect type T1 is

identified from d1 and d2. Inspection scenario S1 will detect

defects categorized as defect type T1 in inspections of a subse-

quent version.

B. Roles

The roles in the development of inspection scenarios and

subsequent inspections are as follows:

TABLE I. EXAMPLES OF DEFECTS

Defect ID Severity Description …

d1 High Order is accepted without specifying quantity purchase. …

d2 High Order is accepted without specifying shipping address. …

d3 Medium Despite a free shipping campaign, a shipping charge appears on the shopping cart screen. …

… … … …

TABLE II. EXAMPLES OF DEFECT TYPES AND INSPECTION SCENARIOS

Defect type ID Defect ID Description Scenario ID Inspection Scenario …

T1 d1, d2 Order is accepted without required information. S1 Are input validations defined when order is accepted? …

… … … …

440

Fig. 1. Overview of the development of inspection scenarios

TABLE III. THE NUMBER OF DEFECTS IN THE EVALUATION

Group Total
Severity

High Medium Low

DA 249 59(23.7%) 124(49.8%) 66(26.5%)

DB 207 48(23.2%) 100(48.3%) 59(28.5%)

defect repository

2. Abstraction of similar defects

inspector

T3

1. Selection of similar defects

T2defect type T1

S3S2
scenario S1

3. Definition of inspection scenarios

4. Assignment of scenarios

 The analyst identifies defect types and develops in-

spection scenarios. The analyst has knowledge of the

software that is to be inspected, its domain, and its typ-

ical and frequent defects.

 The moderator assigns inspection scenarios to inspectors.

The moderator leads inspections and has knowledge of the
skill and experience of the inspectors.

 The inspector detects defects according to the assigned

inspection scenario.

C. Procedure

Figure 1 shows an overview of the development of an in-

spection scenario from the defects in the defect repository. The

procedure is as follows:

1. Selection of similar defects: The analyst selects similar

defects from the defect repository, making use of the

keywords in the defect descriptions.

2. Abstraction and summarization of similar defects into de-

fect types: The analyst summarizes similar defects by ab-

stracting them into defect types T.

3. Definition of inspection scenarios corresponding to defect

types: The analyst defines a set of inspection scenarios S.

Each inspection scenario Si S enables inspectors to detect

defects categorized as a defect type Ti T.

4. Assignment of scenarios to inspectors: The moderator as-

signs inspection scenarios to inspectors.

5. Detection of defects according to scenarios: Inspectors

detect defects using the inspection scenarios.

IV. EVALUATION

A. Defect Repository

The defect repository for the evaluation was collected from

the requirement specification inspection conducted during the

development of two versions of a commercial manufacturing

system. Documented inspection scenarios or checklists were

not used in the inspections of both versions. The duration of

defect collection was nine months. The requirement specifica-

tion document and detected defect descriptions were written in

Japanese. The user interface and the manual of the system were

provided in Japanese and English versions.

The defects detected in the earlier version were defects DA.

The defects detected in the later version were defects DB. De-

fects DA and DB comprised all the defects detected in every

requirement inspection in two versions. Table III shows the

distribution of defect severity.

Each defect in the defect repository included the following

information:

 The version in which it was detected

 The date it was detected: the date of the inspection meet-

ing

 Its severity: the degree of damage to a user (high, medi-

um, or low)

 A detailed description of the defect, question, or concerns

in natural language

B. Procedure

1) Effectiveness of the Inspection Scenarios (RQ1): Analyst

X identifies defect types in Th, Tm, and Tl from defects DAh,

DAm, and DAl, respectively. Defects DAh, DAm, and DAl are high-,

medium-, and low-severity defects in DA. The analyst then

tries to develop inspection scenarios Sh, Sm, and Sl

corresponding to the defect types Th, Tm, and Tl. To reduce the

dependency on one analyst, after analyst X identifies the

defect types and develops the inspection scenarios, analyst Y

examines whether the defect types and the inspection

scenarios are adequate. If analyst Y judges that a defect type

and/or an inspection scenario are not adequate, analyst Y asks

analyst X to review and change the defect type and/or the

inspection scenario.

Analyst X determines whether each defect in DB could be

detected by inspection scenarios Sh, Sm, and Sl. Materials given

to the analysts include inspection scenarios, defects DB, and the

requirements specification. Each determination is conducted

virtually without re-inspection due to limited resources. The

analysts assume the inspection was conducted by an inspector

with typical skill and knowledge in the development project,

and then they determine whether the inspector detected each

defect in DB.

Also, analyst Y evaluates whether the inspection scenarios

can be obtained from another approach. We selected the VBR

as another approach to develop inspection scenarios because

the VBR prioritizes inspection scenarios with defect criticality

and category. Defect criticality rates defects as high-criticality,

medium-criticality, or low-criticality. Defect category consists

441

TABLE IV. DEFECT TYPES AND INSPECTION SCENARIOS IDENTIFIED FROM HIGH-SEVERITY DEFECTS DAH

Defect Type Inspection Scenario
of Defects

Abstracted

Th1 Lack of strict timing in the definition for
counting the number of objects in production

Sh1 Are the definitions of the strict timings of counting objects clear enough for

programmers to identify the sequence of counting? Ensure that the definitions of counting

process include a timing chart.

9

Th2 Lack of consideration of changes from

the previous versions

Sh2 Are unexpected side-effects of changes in reused component of previous versions are

discussed and considered? Ensure that no changes exist in series of events, message formats
in the communication protocol, and access privilege.

9

Th3 Lack of information in a sequence of

screens

Sh3 Is information on each screen strictly defined? Is there no omitted information in a

sequence of screens? Check the series of screens and verify omitted and incorrect input
sequence according to use cases.

7

Th4 Ambiguous definitions of control

Sh4 Are the definitions of the manufacturing controls and processes clear enough for

programmers to implement? Ensure that the sequence, pre-conditions, and post-conditions

of controls and processes are defined.

4

Th5 Inappropriate schema definition
Sh5 Are counter values for monitoring expected to be of variable length or fixed length?

Check whether the variables have a fixed or variable length.
4

Th6 Ambiguous or missing definition of

validation on process P

Sh6 Are validation items and their criteria strictly defined for process P? Ensure that the

definitions exist in the description of process P.
3

Th7 Lack of input data and procedure
definitions of converting

Sh7 Are input values and pre-conditions for converting defined? Ensure that the given
variables for converting are defined and that pre-conditions of converting are defined.

3

Th8 Ambiguous or missing definitions of

input values for counting capabilities

Sh8 Do interface definitions accessing counting capabilities have strict definitions of input

values?
3

Th9 Lack of definition of input file format
Sh9 Are file formats of input files defined? Enumerate the input files and ensure that the

formats of input files are defined in the appendix.
3

of completeness, consistency/feasibility, ambiguity, conform-

ance, and risk. For example, a defect category “critical missing

elements: backup/recovery, external interfaces, success-critical

stakeholders, critical exception handling, missing priorities” is

categorized as belonging to the completeness category and as

having high-criticality. Twenty four defect types are proposed

in the VBR.

A detailed procedure is as follows:

1. Extracting words from the defect description: words wk

and corresponding frequency fk are extracted from the

“defect description” in all defect descriptions in DAh (fk ≥

fk+1).

2. Choosing defects by wk: subset of defects DAhk = {dk1, dk2,
… , dkp} is chosen for each wk, where the defect descrip-
tion of dki includes the word wk, 1 ≤ k ≤ 20, and DAh1

DAh2.

3. Abstracting and summarizing defects in DAhk: Analyst X
attempts to abstract and summarize defects in DAhk or a
subset of DAhk into defect types Th.

4. Developing inspection scenarios Sh: Analyst X attempts to

develop inspection scenario Shi Sh that can detect defects

categorized as defect type Thi Th.

5. Examining the defect types and inspection scenarios:
Analyst Y examines whether each identified defect type
in Th and each developed inspection scenario in Sh are ad-
equate. If needed, analyst Y asks analyst X to review and
change the defect type and/or the inspection scenario.

6. Developing and examining inspection scenarios Sm and Sl

by the same way as developing the inspection scenarios

Sh: Analyst X develops inspection scenario Sm and Sl by

identified defect types Tm and Tl. Defect types Tm and Tl

are abstracted and summarized from defect DAm and DAl,

respectively. Analyst Y examines whether each identified

defect type in Tm and Tl and each inspection scenario in

Sm and Sl are adequate. If needed, analyst Y asks analyst

X to review and change the defect type and/or the inspec-

tion scenario.

7. Determining whether defects DB can be detected by in-

spection scenarios Sh, Sm, and Sl (RQ1-1): Analyst X de-

termines whether each defect in DB could be potentially

detected using the inspection scenarios Sh, Sm, and Sl sep-

arately. Analyst Y ensures that each determination is ad-

equate. If needed, analysts Y asks analyst X to review

and change the determination. Overlaps are allowed

among the defects that are determined to have the poten-

tial to be detected by Sh, Sm, and Sl.

8. Comparing with another approach (RQ1-2): Analyst Y
examines whether inspection scenarios Sh can be obtained
from the checklist proposed in the VBR. Each question in
the checklist has one of the three criticality levels. In the
evaluation, all questions are used.

2) Computer-Supported Analysis (RQ2): To evaluate that

clustering the defects detected in previous software versions

supports the identification of defect types, defects DAh were

clustered into similar subsets using the Ward clustering

method [18], which is a basic clustering algorithm. We chose a

basic clustering algorithm as a first trial. A detailed procedure

442

TABLE V. FREQUENTLY USED WORDS IN DEFECT DESCRIPTIONS OF DAH

Rank Word Frequency

1 count 37

2 information 25

3 event 21

3 count value 21

3 mandate 21

6 featureα 14

6 model X 14

6 alarm 14

10 area 13

TABLE VI. DEFECT TYPES AND INSPECTION SCENARIOS IDENTIFIED FROM MIDDLE-SEVERITY DEFECTS DAM

Defect Type Inspection Scenario
of Defects

Abstracted

Tm1 Omitted execution precondition and
omitted parameter validation before

manufacturing process executions

Sm1 Are pre-conditions and parameter validations defined appropriately before manufacturing

process executions? Ensure that the pre-conditions and parameter validations are fully specified.
13

Tm2 Omitted specification on GUI

component statuses

Sm2 Are the availabilities of the GUI components and the events/triggers for changing

availabilities defined? Check the possibility of changing GUI component statuses and the
events/triggers in the user interface specification document. Ensure that the definitions exist.

12

Tm3 Ambiguous or incorrect range

limitations

Sm3 Are the ranges of transition time, pressure, and rotation speed in manufacturing processes
defined and valid? Ensure that the range limitations of the process executions are satisfied by

referring to corresponding hardware specifications and process definition files.

11

Tm4 Ambiguous or omitted layout

definition of GUI components and

messages

Sm4 Are the detailed layout of GUI components and messages for users defined? Ensure that

neither ambiguous layout definitions nor undefined messages exist in the user interface

specification document.

11

Tm5 Ambiguous, incorrect, or omitted

explanations in screen messages

Sm5 Do the messages cause user misunderstanding? Ensure that no misleading messages exist in
the screen messages. If the messages are changed by events/triggers, ensure that events/triggers

are strictly defined and that there is no inconsistency between events/triggers and message

transitions.

9

Tm6 Insufficient explanation of what
process is to be executed by each GUI

buttons

Sm6 Are the mappings of GUI buttons to process execution defined? Ensure that each GUI

button has the definition of triggered process execution.
6

Tm7 Insufficient consideration of queue

overflow

Sm7 Are exception handlings for queue overflow defined if the persistent data store uses queues?
Find the capabilities of the persistent data store in the specification, and check whether the

capabilities use queues. Ensure that exception handlings for queue overflow are defined, if

queue is used.

4

Tm8 Lack of language settings for user
interface

Sm8 Is the language for the user interface defined? If two or more languages can be selected, are
the default language and language settings defined?

4

Tm9 Ambiguous definition of dialog box

(modal window) and messages on it

Sm9 Are events/triggers for showing dialog boxes defined in the specification? Are the screen

locations of the dialog boxes and the messages in the dialog boxes defined? Find dialog boxes

in the user interface specification and ensure that the events/triggers for showing dialog boxes,

displaying location, and messages in the dialog boxes are defined.

3

is as follows:

1. Clustering defects: The defects DAh are clustered into k

clusters C = {C1, …, Ck} using the Ward clustering method.

Clustering is conducted with the defect descriptions writ-

ten in natural language. The Ward clustering method re-

quires that the number of clusters be given. The numbers

of clusters k are 5, 10, and 15 because we assumed that

the numbers of inspection scenarios varied between one

and three, and that the number of inspectors was five.

2. Identifying overlap between the obtained defect types Th

and the clusters: Analyst X compares each cluster and de-

fect types Th and evaluates the coverage of the defect

types Th by the clusters obtained. Analyst Y ensures that

each evaluation is adequate. If needed, analyst Y can ask

analyst X to review and change the evaluation.

3. Evaluating correspondence between the characteristic

words of each cluster and defect type: Analyst X evalu-

ates that the characteristic words in each cluster represent

a defect type in Th. The characteristic words are those

that have the largest Jaccard similarity coefficient [9] in

each cluster. The Jaccard similarity coefficient j(Ci, w) is

obtained for each word w as follows: j(Ci, w) = | Dw

Ci | / | Dw Ci | where Ci is a cluster and Dw is a set of

defects whose defect description contained word w.

V. RESULT

A. Effectiveness of the Inspection Scenarios (RQ1)

The defect types and inspection scenarios are shown in Ta-

ble IV. In Table IV, words in italics such as process, count,

control, and convert are specific words used in the manufactur-

ing system. For example, the word “process” does not refer to a

general computational process but to a manufacturing process.

Defect type Th2, “Lack of consideration of changes from the

previous software versions” was not added by the analysts, but

was summarized from defect descriptions such as “changes

from version 2.x are not considered.”

Table V shows words wk extracted from the defect descrip-

tions of defects DAh. The defects were originally written in Jap-

443

TABLE VIII. FREQUENTLY USED WORDS IN DEFECT DESCRIPTIONS OF DAM

Rank Word Frequency

1 display 61

2 recipe 58

3 in case of 57

4 button 55

5 folder 47

6 control command A 35

7 queue 29

8 validation 27

9 mm (millimeter) 26

10 less than 24

10 screen 24

TABLE IX. FREQUENTLY USED WORDS IN DEFECT DESCRIPTIONS OF DAL

Rank Word Frequency

1 button 32

2 indication 29

3 implementation items 21

3 screen 21

3 control command B 21

6 label 14

6 area 14

6 in case of 14

6 alarm 14

10 area 13

TABLE VII. DEFECT TYPES AND INSPECTION SCENARIOS IDENTIFIED FROM LOW-SEVERITY DEFECTS DAL

Defect Type Inspection Scenario
of Defects

Abstracted

Tl1 Misleading messages on GUI

component and inconsistency among
labels of GUI component

Sl1 Are there misleading messages on GUI components? For example, alert messages do not
disappear even though the alerting conditions are no longer satisfied. Are there consistencies

among similar GUI components including groups of labels and positions of GUI

components?

12

Tl2 Lack of referred document
Sl2 Are documents, figures and tables that are referred to available? Find external references

in the specification and ensure that the external references are available.
4

Tl3 Incorrect screen transition chart
Sl3 Are screen transitions correctly specified in the screen transition chart? Ensure that each

transition and transition condition is described as expected and intended.
2

Tl4 Lack of information indicating process

completion

Sl4 Do the criteria or exit status indicate that process completed with a normal status as

described? Ensure that notification, status, or information indicating process completion is
described.

2

Tl5 Insufficient explanations of the

mapping of user operations to commands

for the manufacturing subsystem

Sl5 Are the definitions of the user’s operations and the corresponding executed commands for

the manufacturing subsystem clearly described? If a user operation may execute two or more

commands for the subsystems, is condition for each execution clear?

2

anese and words in Table V were originally single words.

Some words in Table V consist of two words because the

words were translated into English. The frequency is not the

number of defects dk but the number of word appearances in

the defect descriptions of defects DAh. The most frequently

used word in defect descriptions in defects DAh was “count,”

with 37 appearances. The number of defects whose defect de-

scriptions included the word “count” was 18. The analysts se-

lected nine defects that described ambiguities in the timing of

counting the number of objects in production in the manufac-

turing system. The defects were abstracted and summarized as

the defect type “lack of strict timing in the definition for count-

ing the number of objects in production.” The corresponding

inspection scenario was defined as “Are the definitions of the

strict timings of counting objects clear enough for programmers

to identify the counting sequence?”

The analysts identified defect types Tm and Tl and inspec-

tion scenarios Sm and Sl. The defect types and inspection sce-

narios are shown in Table VI and VII. Table VIII shows words

wk extracted from DAm. Table IX shows words wk extracted

from DAl.

TABLE X. THE DISTRIBUTIONS OF DEFECTS THAT CAN POTENTIALLY BE

DETECTED USING INSPECTION SCENARIOS SH

Scenario Total
Severity

High Medium Low

Sh1 10 10 0 0

Sh2 42 10 22 10

Sh3 30 4 12 14

Sh4 4 4 0 0

Sh5 12 5 6 1

Sh6 4 4 0 0

Sh7 3 3 0 0

Sh8 6 3 3 0

Sh9 7 3 2 2

All 118 46 45 27

TABLE XI. THE DISTRIBUTIONS OF DEFECTS THAT CAN POTENTIALLY BE

DETECTED USING INSPECTION SCENARIOS SM

Scenario Total
Severity

High Medium Low

Sm1 4 0 4 0

Sm2 20 0 12 8

Sm3 9 1 8 0

Sm4 31 3 8 20

Sm5 18 1 11 6

Sm6 7 0 5 2

Sm7 9 1 4 4

Sm8 3 0 3 0

Sm9 1 0 1 0

All 102 6 56 40

444

TABLE XII. THE DISTRIBUTIONS OF DEFECTS THAT CAN POTENTIALLY BE

DETECTED USING INSPECTION SCENARIOS SL

Scenario Total
Severity

High Medium Low

Sl1 7 0 7 0

Sl2 1 0 1 0

Sl3 0 0 0 0

Sl4 2 0 0 2

Sl5 0 0 0 0

All 10 0 8 2

TABLE XIII. COVERAGE BY THE CLUSTERS FROM DAH

Defect type
Number of

Defects

Corresponding Cluster

Ca Cb Cc

Th1 9 Ca1 Cb1 Cc1

Th2

6 Ca2 Cb2 Cc2

1 Ca3 Cb3 Cc3

1 Ca4
Cb4

Cc4 1 Ca5

Th3

2 Ca6 Cb5

3 Ca7 Cb6

Cc3 2 Ca8
Cb3

Th4
2 Ca3

2 Ca9 Cb7
Cc5

Th5 4 Ca10 Cb8

Th6 3 Ca11 Cb9 Cc4

Th7 3 Ca12 Cb10

Cc5
Th8 3 Ca9 Cb7

Th9 3 Ca12 Cb10

Not

categorized

1 Ca9 Cb7

1 Ca6 Cb5

Cc4

1 Ca4

Cb4

3 Ca5

2 Ca13

4 Ca14

2 Ca15

TABLE XIV. WORDS WITH A LARGER JACCARD SIMILARITY COEFFICIENT

IN THE CLUSTERS CA

Cluster Words and Jaccard Similarity Coefficients

Ca1 timing(0.89), event(0.75), counter(0.70)

Ca2 message(1.00), control(0.86), change(0.55)

Ca3 operation(1.00), manual(1.00), figure(0.67)

Ca4 recipe(0.67), minimum(0.50), column(0.50)

Ca5 file(1.00), foundation(1.00), cell(0.50)

Ca6 folder(1.00), unit(0.75), error(0.67)

Ca7 present(1.00), link(1.00), module(0.75)

Ca8 perspective(1.00), monitor(1.00), two or more(1.00)

Ca9 operation(0.75), data(0.60), monitoring(0.50)

Ca10 persistence(1.00), schema(0.80), database(0.67)

Ca11 lock(1.00), library(0.75), forbidden(0.67)

Ca12 procedure(1.00), converting(0.83), xml(0.75)

Ca13 instruction(0.50), operation(0.50), manual(0.50)

Ca14 subsystem(1.00), brush(1.00), device(0.50)

Ca15 production version(0.50),format(0.50),parameter(0.50)

TABLE XV. WORDS WITH A LARGER JACCARD SIMILARITY COEFFICIENT

IN THE CLUSTERS CB

Cluster Words and Jaccard Similarity Coefficients

Cb1 timing(0.89), event(0.75), counter(0.70)

Cb2 message(1.00), control(0.86), change(0.55)

Cb3 manual(0.60), operation(0.60), all(0.43)

Cb4 foundation(0.29), recipe(0.25), parameter(0.21)

Cb5 folder(1.00), unit(0.75), error(0.67)

Cb6 present(1.00), link(1.00), module(0.75)

Cb7 operation(0.75), data(0.60), monitoring(0.50)

Cb8 persistence(1.00), schema(0.80), database(0.67)

Cb9 lock(1.00), library(0.75), forbidden(0.67)

Cb10 procedure(1.00), converting(0.83), xml(0.75)

TABLE XVI. WORDS WITH A LARGER JACCARD SIMILARITY COEFFICIENT

IN THE CLUSTERS CC

Cluster Words and Jaccard Similarity Coefficients

Cc1 timing(0.89), event(0.75), counter(0.70)

Cc2 message(1.00), control(0.86), change(0.55)

Cc3 corresponding(0.70), module(0.50), status(0.50)

Cc4 validation(0.35), recipe(0.30), unit(0.20)

Cc5 information(0.82), counter(0.81), data(0.63)

The analysts determined that a subset of defects DB could

be potentially detected using the obtained inspection scenarios

Sh, Sm, and Sl. Table X shows the distribution of defects that

have the potential to be detected using inspection scenarios Sh.

We performed Fisher’s exact test on the distributions of defect

severity. The null hypothesis, “the distributions of defect sever-

ity in DB and the distribution of defect severity of defects that

have the potential to be detected using Sh are the same,” was

rejected at a significance level of 0.05 (p = 0.012). The per-

centage of high-severity defects categorized detected using

inspection scenarios Sh was 40.0%. This percentage is 1.7 times

larger than the percentage of high-severity defects in DB. The

percentage of medium-severity defects detected using Sh was

88.4% larger than the percentage of medium-severity defects in

DB. It was determined that inspection scenarios Sh1, Sh4, Sh6, and

Sh7 detect only the high-severity defects. Here, high-severity

defects are the defects categorized as high severity defects by

the inspectors when they were stored into the defect repository.

Table XI shows the distributions of defects that have the

potential to be detected using inspection scenarios Sm. The null

hypothesis, “the distribution of defect severity in DB and the

distribution of defect severity in the defects that have the poten-

tial to be detected using Sm are the same,” was rejected by Fish-

er’s exact test at a significance level of 0.05 (p = 0.00027).

Most of the defects judged to be potentially detected by inspec-

tion scenarios Sm were medium- or low-severity defects

Table XII shows the distributions of defects that have the

potential to be detected using inspection scenarios Sl. The null

hypothesis, “the distribution of defect severity in DB and the

distribution of defect severity that have the potential to be de-

tected by Sl are the same,” was not rejected by Fisher’s exact

test at a significance level of 0.05 (p = 0.15). No defect in DB

was determined to be detectable by inspection scenarios Sl3 and

Sl5.

For RQ1-2, analyst Y also determined that four inspection

scenarios Sh3, Sh5, Sh8, and Sh9 could be obtained using the VBR

checklist.

445

B. Computer-Supported Analysis (RQ2)

We used KH Coder [8] to cluster defects DAh. KH Coder is

one of the major natural language processing tools that can

analyze descriptions written in Japanese. Table XIII shows the

coverage of defect type Th by the clusters from defects DAh. The

clusters Ca, Cb, and Cc correspond to clusters obtained by speci-

fying 15, 10, and 5 as the number of clusters, respectively.

Clusters Ca1, Cb1, and Cc1 had one-to-one correspondences with

defect type Th1. One-to-one correspondence was also observed

between defect type Th5 and clusters Ca10 and Cb8 as well as

between defect type Th6 and clusters Ca11 and Cb9. Clusters Ca3,

Ca9, Ca12, Cb3, Cb7, Cb10, Cc3, Cc4, and Cc5 corresponded to two

or more defect types. Fourteen defects that were not selected

for summarizing and abstracting in RQ1 were clustered.

Tables XIV, XV, and XVI show the three words with the

top three largest Jaccard similarity coefficients in each cluster.

In the tables, each value between brackets is a Jaccard similari-

ty coefficient. A larger value indicates that the word appears

frequently in the defects clustered into the same cluster but not

in the defects in the other cluster. The words with the largest

Jaccard similarity coefficients among a cluster express the cor-

responding defect types Th1, Th5, and Th6, which had one-to-one

correspondence with clusters. The words “timing,” “event,”

and “counter” in clusters Ca1, Cb1, and Cc1 express defect type

Th1 “Lack of strict timing in the definition for counting the

number of objects in production.” Clusters Ca10 and Cb8 have

the same words that express defect type Th5. Also, clusters Ca12

and Cb10 have the same words that express defect types Th7 and

Th9. The difference between defect types Th7 and Th9 is in

whether or not conditions are defined for the manufacturing

process of converting.

Defect type Th2, “Lack of consideration of changes from the

previous versions” includes different characteristic words in

clusters Ca2, Ca3, Ca4, Ca5, Cb2, Cb3, Cb4, Cc2, Cc3, and Cc4. Clus-

ters Ca2, Cb2, and Cc2 all have the words “message,” “control,”

and “change.” The clusters consist of the same six similar

defects. However, the analysts focused on broader similarities

among Ca2, Ca3, Ca4, and Ca5.

VI. DISCUSSION

A. Effectiveness of the Inspection Scenarios (RQ1)

The distributions of the severities of defects that have the

potential to be detected by inspection scenarios Sh, Sm, and Sl

are all distinct. The percentage of high-severity defects detect-

ed using inspection scenarios Sh is larger than that with inspec-

tion scenarios Sm, and Sl. Therefore, the answer to research

question RQ1-1 is that the inspection scenarios Sh detect more

high-severity defects than the number detected by inspection

scenarios Sm, and Sl.

Inspection scenarios Sh check the strict definitions of specif-

ic capabilities, pre-conditions, and the sequence of manufactur-

ing sub-processes that can potentially mislead programmers

into incorrect implementations. Most of inspection scenarios Sm

focus on the messages on the system screen, GUI layout, and

the status of GUI components in order to avoid unintended

operations by system users. Most of inspection scenarios Sl

verify the existence of the referred documents for programmers

during development and of clear information for system users

during operation.

The results show that inspection scenarios Sh1, Sh4, Sh6, and

Sh7 detected only high-severity defects. These inspection sce-

narios focus on strict definitions of specific manufacturing pro-

cesses and controls. Overlooking defects in the processes and

controls might cause manufacturing product failure due to an

incorrect implementation of the manufacturing system. Inspec-

tion scenarios Sm focus on ambiguous or omitted messages and

available controls on the user interface. The percentage of me-

dium-severity defects detected using inspection scenarios Sm is

larger than the percentage of those detected using inspection

scenarios Sh and Sl. The number of defects detected using in-

spection scenarios Sl is small because defects DBl include vari-

ous types of defects similar to defects DAl.

In the evaluation, the analyst developed as many inspection

scenarios as possible; however, in practice, an analyst can se-

lect only high-priority defect types, which leads to more effec-

tive inspection scenarios and prioritized defect detection.

The answer to the research question RQ1-2 is that inspec-

tion scenarios Sh3, Sh5, Sh8, and Sh9 can be developed with the

VBR checklist while others cannot. The VBR checklist aims to

identify the critical capabilities of the software. However, as

the number of capabilities becomes larger, identifying and pri-

oritizing these critical capabilities become difficult for an ana-

lyst without knowing which defects were detected in previous

versions. If the analyst tried to cover all critical capabilities, the

identified defect types and the developed inspection scenarios

would become too general, and as Brykczynski pointed out,

general inspection scenarios do not work [3].

B. Computer-Supported Analysis (RQ2)

The Ward clustering method clustered defects DAh into sub-

sets of defects. Some of the subsets had a one-to-one corre-

spondence with the defect types identified in RQ1. The results

indicate that the defect clusters can help an analyst select simi-

lar defects. The results also suggest that the words with larger

Jaccard similarity coefficients potentially help analyst identify

defect types and develop inspection scenarios. The answer to

the research question RQ2 is that computer-supported analysis

of defects can help an analyst identify defect types.

Discussion with the analysts clarified that some clusters

such as Ca1, Cb1, and Cc1 were clear enough to identify defect

types and that the defects clustered therein had explicit simi-

larities that distinguished them sufficiently from the other clus-

ters. The discussion also clarified that the similarities among

the defects of other clusters depended on the number of clusters

specified as a parameter to the clustering algorithm. A cluster-

ing algorithm that takes the similarity measure as a threshold

might provide more explicit clusters. We believe that employ-

ing other clustering algorithms and computer-supported ap-

proaches for categorizing defects would produce similar results,

and this remains a potential area for future study.

Although 14 defects were not used for identifying the de-

fect types in RQ1 by the analysts, these 14 defects were clus-

tered into subsets by the clustering algorithm. The analysts

pointed out that the defect descriptions in the subsets included

446

similar words and could be categorized as defect types. How-

ever, inspection scenarios corresponding to the defect types

would be ambiguous or too general to be used to detect defects

in a subsequent version.

C. Discussions with Practitioners

The authors engaged in discussion with engineers working

on the development of the system. The engineers included the

software development leader and analysts X and Y. The out-

comes of the discussions are as follows:

 Prioritized inspection is possible with inspection scenario Sh.

Inspection scenarios Sh assessed the essential and critical

capabilities of the manufacturing system. Also, the inspec-

tion scenarios examined whether the documented essential

and critical capabilities, including the manufacturing pro-

cess and the sequence of manufacturing sub-processes,

were correct or not. The correctness of the documentation

reduces rework in system testing.

 The inspection scenarios developed by the VBR checklist

could not specify the essential and critical capabilities with

a granularity equivalent to inspection scenarios Sh. If an

equivalent granularity is required, the number of inspection

scenarios obtained by the VBR must be large because there

are many similar essential and critical capabilities such as

converting, counting, and control capabilities.

 The defects detected in previous software versions are the

defects in the essential and critical capabilities for the sys-

tem. The defects also led to misunderstandings by the pro-

grammers and incorrect implementations that required re-

working during the system testing phase.

 In the procedures used to answer RQ1, word frequency was

used to identify defect types. If required defect data are

available, including defect triggers, orthogonal defect clas-

sification [5] can be used to identify defect types.

 The words with larger Jaccard similarity coefficients in

some clusters in Ca and Cb induced defect types without

having an analyst consider every single defect description

in detail. Clustering defects potentially reduces the effort

required for identifying defect types and developing corre-

sponding inspection scenarios. The words can mitigate bar-

riers for developing inspection scenarios in practice. In fact,

when the list of the three words with the largest Jaccard

similarity coefficients shown in Tables XIV, XV, and XVI

in each cluster was shown on the screen, engineers said

“Those are in function X.” and “He is good at detecting

them.”

 In the defect repository, defects DA and DB have similar

trends, because the changed and added requirements are

similar in both versions. Our procedure depends on simi-

larities existing between previous versions of the software

and the subsequent version.

D. Threats to Validity

The identified defect types and the developed inspection

scenarios might be too dependent on the particular analyst per-

forming the task; however, in the evaluation, we used frequent-

ly used words to abstract and summarize defects in the evalua-

tion to reduce the dependency on the analyst. Moreover, we

asked another analyst to ensure that the defect types and in-

spection scenarios were adequate.

Because the defect repository in the evaluation included

two releases without any large changes in the inspection pro-

cess and the development process, the defects DA and the de-

fects DB were considered to have similar types of defects.

Large process changes or process improvements between pre-

vious software versions and a subsequent version must be con-

sidered when using the defect repository of defects detected in

previous software versions.

The defects DAh and DBh included defects specific to the

manufacturing process and controls. That could be one of the

causes for the larger percentage of high-severity defects detect-

ed using inspection scenarios Sh. Based on our previous re-

search of defect repositories, including the articles [12] and

[13], we believe that this tendency is common among defect

repositories. Further investigation and discussion of similar

tendencies in other defect repositories is required to generalize

the results of our study.

VII. CONCLUSION

This paper evaluated the effectiveness of inspection scenar-

ios developed by abstracting and summarizing defects detected

during software inspections of previous software versions. First,

an analyst with knowledge and experience of the target soft-

ware identifies defect types from high-severity defects detected

in previous software versions. Then, the analyst develops an

inspection scenario for each defect type. In software inspec-

tions of a subsequent version, inspectors try to detect defects

using the developed inspection scenarios. The inspection sce-

narios enable inspectors to conduct prioritized defect detection.

The evaluation investigated 456 defects detected in inspec-

tions of two versions of an industrial manufacturing system.

Each defect had one of the three severities (high, medium, or

low). The defects were collected from the earlier version (de-

fects DA), which included 59 high-severity defects, as well as

from the later version (defects DB), which included 48 high-

severity defects. Analyst X identified nine defect types out of

the high-severity defects in DA and developed the correspond-

ing inspection scenarios. To reduce the dependency on analyst

X, analyst Y ensured that the identified defect types and the

developed inspection scenarios were adequate.

Analyst X judged whether each inspection scenario could

potentially detect defects in DB. The inspection scenarios from

high-severity defects were found to potentially detect 118 de-

fects, including 46 high-severity defects (39.0%). The inspec-

tion scenarios from medium-severity defects could potentially

detect 102 defects, including six high-severity defects (5.9%).

The inspection scenarios from low-severity defects could no

high-severity defects. Also, analyst Y examined whether each

inspection scenario could be obtained from the checklist pro-

posed by the VBR. Analyst Y determined that the five of the

nine inspection scenarios developed from high-severity defects

could not be obtained with the VBR checklist.

To evaluate the feasibility of computer-supported inspec-

tion scenario development, defects were categorized by a clus-

447

tering algorithm and compared to the identified defect types by

the analysts. The results showed that some clustered defects

had a one-to-one correspondence with identified defect types

and that other clustered defects were subsets of identified de-

fect types. The results indicate that cluster analysis could help

analysts develop inspection scenarios and could reduce the

effort required to identify defect types.

REFERENCES

[1] Z. Abdelrabi, E. Cantone, M. Ciolkowski, D. Romach,

Comparing Code Reading Techniques Applied to Object-

Oriented Software Frameworks with Regard to Effectiveness

and Defect Detection Rate, Proceedings of the 2004

International Symposium on Empirical Software Engineering,

pp.239-248(2004)

[2] V. R. Basili, S. Green, O. Laitenberger, F. Lanubile, F. Shull, S.

Sivert Sorumgard, M. V. Zelkowitz, The Empirical Investigation

of Perspective-Based Reading, International Journal of

Empirical Software Engineering, vol. 1,no. 2, pp. 133-164(1996)

[3] B. Brykczynski, A Survey of Software Inspection Checklists,

ACM SIGSOFT Software Engineering Notes vol. 24, no. 1, pp.

82-89(1999)

[4] Y. Chernak, A Statistical Approach to the Inspection Checklist

Formal Synthesis and Improvement, IEEE Transactions on

Software Engineering, vol.22, no.12, pp.866-874(1996)

[5] R. Chillarege, I.S. Bhandari, J.K. Chaar, M.J. Halliday, D.S.

Moebus, B.K. Ray, and M. Wong, Orthogonal Defect

Classification - A Concept for In-Process Measurements. IEEE

Transactions on Software Engineering, vol. 18, no. 11, pp. 943-

956(1992)

[6] C. Denger, M. Ciolkowski, F. Lanubile, Investigating the Active

Guidance Factor in Reading Techniques for Defect Detection,

Proceedings of the 2004 International Symposium on Empirical

Software Engineering, pp. 219-29(2004)

[7] M.E. Fagan, Design and Code Inspection to Reduce Errors in

Program Development, IBM System Journal, vol.15, no.3,

pp.182-211(1976)

[8] K. Higuchi, KH Coder, http://khc.sourceforge.net/en/

[9] P. Jaccard, The Distribution of the Flora in the Alpine Zone,

New Phytologist, vol.11, no. 2, pp. 37-50(1912)

[10] F. Lanubile, F. Shull, V. R. Basili, Experimenting with Error

Abstraction in Requirements Documents, In Proceedings of the

5th International Symposium on Software Metrics, pp. 114-

121(1998)

[11] K.Lee, B. Boehm, Empirical Results from an Experiment on

Value-based Review (VBR) Processes, Proceedings of

International Symposium on Empirical Software Engineering

2005 pp. 17-18(2005)

[12] T. Matumura, S. Morisaki, A. Monden, K. Matsumoto,

Analyzing Factors of Defect Correction Effort in a Multi-vendor

Information System Development, Journal of Computer

Information Systems, vol.49, No.1, pp.73-80(2008)

[13] S. Morisaki, A. Monden, T. Matsumura, H. Tamada, K.

Matsumoto, Defect Data Analysis Based on Extended

Association Rule Mining, Poceedings of the Fourth International

Workshop on Mining Software Repositories, pp.1-8(3) (2007)

[14] S. Morisaki, Y. Kamei, K. Matsumoto, An Experimental

Evaluation of the Effectiveness of Specifying A Defect Type in

Software Inspection, Journal of Information and Media

Technologies, vol.6, no.4, pp.173-178(2011)

[15] A. Porter, L. Votta and V.R. Basili, Comparing Detection

Methods for Software Requirements Inspections: A Replicated

Experiment, IEEE Transactions on Software Engineering, vol.21,

no.6, pp. 563-575(1995)

[16] E. Shihab, A. Mockus, Y. Kamei, B. Adams, A. E. Hassan,

High-impact Defects: A Study of Breakage and Surprise Defects.

In Proceedings of the 19th Symposium and the 13th European

Conference on Foundations of Software Engineering, pp. 300-

310(2011)

[17] T. Thelin, P. Runeson, B. Regnel, Usage-based Reading: An

Experiment to Guide Reviewers with Use Cases, Information

and Software Technology, vol. 43, no. 15, pp.925-938(2001)

[18] J. H. Ward, Hierarchical Grouping to Optimize an Objective

Function, Journal of the American statistical association vol.58,

no.301, pp. 236-244(1963)

[19] G. S. Walia, J.C. Carver, Using Error Abstraction and

Classification to Improve Requirement Quality: Conclusions

from a Family of Four Empirical Studies, Journal of Empirical

Software Engineering, vol.18, no.4, pp.625-658(2013)

448

